
AUSPICE: Automatic Safety Property
Verification for Unmodified Executables

Erratum and Corrections: 17 May 2016

Jiaqi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Department of Electrical & Computer Engineering, Carnegie Mellon University
tanjiaqi@cmu.edu,htay@andrew.cmu.edu,rgandhi@ece.cmu.edu,priya@cs.cmu.edu

1 Executive Summary

This document describes corrections to our earlier paper [1]. We update the Safe
Function rule (§3.3 and Figure 3 in [1]) to fully specify whole-program safety, and
we update the proof sketch for the correctness of the Safe Function rule (§5 in
[1]. The Safe Function rule in [1] did not fully cover all required safety-assertion
discharges in the CFG of a program. We also point out deficiencies in our earlier
correctness proof sketch, and we update the proof sketch for our updated Safe
Function rule.

2 The LLR Program Logic: Updated Safe Function Rule

2.1 Deficiencies in Safe Function rule in [1]

Our Safe Function rule defines what it means for a (source-code level) function
in machine-code to possess our safety-properties (of memory-write and control-
flow safety, as defined in §2.2 of [1]). Our Safe Function rule (§3.3 and Figure 3
in [1]) has 6 conjuncts which describe the following cases:

1. Address of function being described,
2. Entry CFG node of the function,
3. Exit CFG nodes of the function,
4. Intra-procedural control-flow transfers between basic blocks within the func-

tion,
5. Inter-procedural control-flow transfers: function calls where a basic block

local to the current function invokes a callee function,
6. Inter-procedural control-flow transfers: function returns from a callee func-

tion to a basic block local to the current function.

The Safe Function rule needs to ensure that safety-assertions hold for ev-
ery possible control-flow transfer (i) within the function, (ii) to callee functions
(i.e., function calls), and (iii) from callee functions (i.e., function returns). The
Safe Function rule needs to (i) capture every possible control-flow, and (ii) re-
quire that the safety-assertions at each successor are discharged by the pre-
conditions of its predecessor in the Control-Flow Graph (CFG) of the program.

HOARE WITH ASSERT (§3.3 in [1]) represents a tuple-version of a Hoare triple the-
orem describing the behavior of a basic block local to the current function, and
FUN SAFE represents a Safe Function theorem describing the safety of a callee
function. In the Safe Function rule in [1], conjuncts 4 and 6 did not fully specify
all possible control-flow transfers.

The two HOARE WITH ASSERT triples in conjunct 4 represent, respectively, a
predecessor node and a successor node in a CFG. Then, the successor PC address,
succ in the successor node (i.e., the second HOARE WITH ASSERT triple in conjunct
4), is only existentially quantified in our original Safe Function rule. However, as
our HOARE WITH ASSERT triples describe single-entry, single-exit basic blocks, to
fully specify a CFG node, we need to specify one HOARE WITH ASSERT triple for
each possible target address that the CFG node can jump to after it has been
executed. Hence, existentially quantifying the successor PC (program-counter)
address in the second HOARE WITH ASSERT triple in conjunct 4 results in under-
specification of the safety requirements, as CFG nodes with multiple possible suc-
cessor PC addresses will have HOARE WITH ASSERT triples whose safety-assertions
are not specified as needing to be discharged in the Safe Function theorem for
the function.

Thus, conjunct 4 of the previous Safe Function rule in [1] allows the safety-
assertions in intra-procedural (i.e., receiving control transfers from an intra-
procedural basic block) HOARE WITH ASSERT triples for CFG nodes with more
than one successor PC (i.e., branching blocks) to go undischarged, since the ex-
istential quantifier means that for CFG nodes with multiple HOARE WITH ASSERT

triples, only one of them needs to have its safety-assertions discharged.

In conjunct 6, similarly to conjunct 4, the successor PC of the HOARE WITH ASSERT

triple for the return-site from a function is existentially quantified. Thus, for
callee functions that return to a branching basic block in the current function
under analysis, which has more than one possible successor PC, our previous
Safe Function rule will under-specify the safety-requirements for the program,
and allow the safety-assertions in HOARE WITH ASSERT triples with the same ad-
dress, but different successor PC, to go undischarged (by not requiring them to
be discharged in the Safe Function theorem).

Thus, conjunct 6 of the previous Safe Function rule in [1] allows the safety-
assertions in inter-procedural (i.e., receiving control transfers from callee func-
tions) HOARE WITH ASSERT triples for CFG nodes with more than one successor
PC (i.e., branching blocks) to go undischarged, since the existential quantifier
means that for CFG nodes with multiple HOARE WITH ASSERT triples, only one
of them needs to have its safety-assertions discharged.

We note that conjunct 5 does not need to be updated as the predecessor
and successor PCs of the calling basic block, and the PC of the Safe Function
theorem for the callee function, are all universally quantified, and sufficiently
constrained.

2.2 Updated Safe Function rule

Figure 1 describes our updated Safe Function rule, with conjuncts 4 and 6 up-
dated. In both conjuncts 4 and 6, we need to consider all possible successor PCs
succ for a given HOARE WITH ASSERT triple of a given node, node.

In conjunct 4, we have universally quantified the successor PC of the suc-
cessor (i.e., second) HOARE WITH ASSERT triple for intra-procedural control-flow
transfers. We now require, for each node node, to have all the HOARE WITH ASSERT

triples associated with the node (i.e., all possible CFG successors succ for node)
to be included in the Safe Function rule, and to have their safety-assertions dis-
charged by the pre-conditions of their predecessor nodes’ HOARE WITH ASSERT

triples. The successor PCs, succ, for a given node node, are either local PC
addresses of basic blocks in the same function, which are given by the intra-
procedural CFG successor map CFGsucc , or they can be PC addresses of callee
functions, which would be captured by the inter-procedural CFG predecessor
map ICFGcallpred , which returns the callee function addresses called given a
basic block address node in the current function.

In conjunct 6, we have universally quantified the successor PC of the suc-
cessor (i.e., second) HOARE WITH ASSERT triple for intra-procedural control-flow
transfers. We now require, for each node node, to have all the HOARE WITH ASSERT

triples associated with the node (i.e., all possible CFG successors succ for node)
to be included in the Safe Function rule, and to have their safety-assertions dis-
charged by the pre-conditions of their predecessor nodes’ HOARE WITH ASSERT

triples. Similarly to conjunct 4, we require all possible successor CFG PCs succ
for a given PC node to be specified, and they can be intra-procedural PCs (given
by the intra-procedural CFG successor map CFGsucc), or inter-procedural PCs
of callee functions called by the basic block (given by the inter-procedural CFG
predecessor map ICFGcallpred).

3 Proof Sketch of Correctness of Safe Function Rule

3.1 Deficiencies in Correctness Proof Sketch for Safe Function rule
in [1]

As explained earlier in §2.1, each CFG node is represented by one single-entry,
single-exit Hoare triple theorem for each possible successor PC that control trans-
fers to after the execution of that node. Hence, for a CFG node with N possible
successor PCs, it is represented by N Hoare triples (or Safe Function theorems,
for inter-procedural targets whose PCs are outside address range of the current
function). Our earlier correctness proof sketch did not consider each CFG node
as being represented by one or more single-entry, single-exit basic blocks, and
omitted considering branching basic blocks. Next, we update our proof sketch of
correctness for our updated Safe Function rule.

3.2 Updated Correctness Proof Sketch for Safe Function rule

We reproduce the correctness proof sketch from §5 of [1], and we highlight the
updated parts of the correctness proof sketch in blue.

Next, we give a brief, informal argument of the correctness of our proof rule
for safe programs. The FUN SAFE theorem (Figure 1) can be proven for a program
if and only if safety assertions are specified for every instruction, and if these
safety assertions hold before that instruction begins executing (except for the
first instruction, which relies on the OS to correctly initialize the processor state
for the program). We argue this by Structural Induction on the Control-Flow
Graph (CFG) of a program. The CFG of a function in a program consists of
nodes and edges. Each node represents either (i) a basic block of a linear se-
quence of instructions (whose control can transfer out of the basic block only
at the end of the basic block) in the function at a given address, or (ii) a callee
function that is invoked in the function. Then, an edge in the CFG represents a
transfer of control from one node in the CFG (which can be a basic block in the
function, or a callee function), to another node in the CFG. A callee function
node is associated with a single FUN SAFE theorem which specifies the safety of
the callee function. A basic block node (in the function) is associated with one
HOARE WITH ASSERT triple for each possible target that control can transfer to af-
ter the basic block has been executed. Thus, for safety to hold at each CFG node,
the safety-assertions at all associated FUN SAFE or HOARE WITH ASSERT theorems
for that node must be discharged by the pre-conditions of all the associated
FUN SAFE or HOARE WITH ASSERT theorems for all predecessor nodes of the node.
Base Case. The MEM CFI SAFE rule (§3.1 in [1]) ensures every instruction’s the-
orem contains our safety assertions (§2.2 in [1]). The MEM CFI SAFE COMPOSE

rule ensures every basic block’s theorem is built up only from single-instruction
theorems with added safety assertions. The requirement that post-states of
predecessor theorems and pre-states of successor theorems must be equal in
MEM CFI SAFE COMPOSE ensures every basic block’s theorem accumulates the
safety assertions for every composed safe instruction theorem. Then, for a pro-
gram with only a single instruction or basic-block, if the OS correctly initializes
the processor state, the safety assertions will hold for the single instruction or
single basic block.
Inductive Case. We take the CFG of a function, G, and partition its vertices
into a single vertex, g, and all other vertices, G′. By the Inductive Hypothesis,
the FUN SAFE theorem holds for G′. Then, consider the edges E connecting G′

to g. In the absence of function pointers and unstructured jumps (longjmp),
the edges E are either (i) intra-procedural control-flow transfers between basic
blocks in the function, (ii) function calls from a basic block in the function to a
callee function, or (iii) function returns from a callee function to a basic block
in the function.

Then, for FUN SAFE to be true, the fourth to sixth conjunct clauses of the
FUN SAFE rule must be true. We will see how the 4th to 6th conjuncts cover
all possible types of control-flows to and from the node g, so that the pre-
conditions of the theorems of all predecessor vertices to g in the CFG discharge

the safety assertions at g, making the safety assertions at g hold, for any type
of possible control-flow transfer to g for all FUN SAFE or HOARE WITH ASSERT

theorems associated with g.
In the case of intra-procedural control-flow transfers to g, where g is a basic

block within the function being analyzed, g is associated with one HOARE WITH ASSERT

triple for each possible control-transfer target from node g. These targets can
either be intra-procedural targets (i.e., the successor node to g is a basic block
within the function), or inter-procedural targets (i.e, the successor node to g is
a callee function outside the function). The 2nd precedent of the 4th conjunct,
∀pred · pred ∈ CFGpred(node) ensures all predecessors to g are considered. The
1st disjunct of the 3rd precedent, ∀succ · succ ∈ CFG succ(node) ensures all
possible intra-procedural successor nodes to g are considered. The 2nd disjunct
of the 3rd precedent, ∀succ · succ ∈ ICFGcallpred(node) ensures all possible inter-
procedural successor nodes to g (i.e., callee functions jumped to after g) are
considered. Thus, all possible predecessors to the CFG node g are considered,
and all possible control-transfer targets from CFG node g are considered.

In the case of inter-procedural control-flow function-calls to g (i.e., g is a
callee function, as in the 5th conjunct), FUN SAFE theorems for callee functions
g are indexed only by the address of the function, but not by the address of the
return-site from the function. Hence, we only need to consider all call-sites of
the function. The two precedents in the 5th conjunct (i.e., ∀node, succ · node ∈
ICFGcallsucc(succ)⇒ succ ∈ ICFGcallpred(node)) ensure that all call-sites within
the function to the callee function are considered.

In the case of inter-procedural control-flow function-returns to g (i.e., g is a
basic block within the function, as in the 6th conjunct, and its predecessor is a
callee function), the first two precedents of the 6th conjunct, ∀node, pred ·node ∈
ICFGretsucc(pred) ⇒ pred ∈ ICFGretpred(node), ensure that the function from
which control is returned to node g is considered. Then, the two disjuncts in the
3rd precedent, succ ∈ CFGsucc(node)∨succ ∈ ICFGcallpred(node), ensure respec-
tively that the HOARE WITH ASSERT triples for (i) all possible intra-procedural
successor nodes to g, and that (ii) all possible inter-procedural successor nodes
to g, are considered.

Thus, our FUN SAFE rule ensures that we have captured all the possible
control-flow transfers in a machine-code program. For FUN SAFE to be correct, we
require correct CFG predecessor and successor maps, which are straightforward
to compute without function pointers and unstructured jumps.

References

1. Tan, J., Tay, H., Gandhi, R., Narasimhan, P.: AUSPICE: Automatic Safety Property
Verification for Unmodified Executables. In: VSTTE (2015)

` FUN SAFE(addr ,NODES ,FUNCS ,CFGpred ,CFGsucc , ICFGcallpred , ICFGcallsucc ,

ICFGretpred , ICFGretsucc , assnsentry , postcondexit , prestate, poststate)⇔
((∀node · node ∈ NODES ⇒ (min(node, addr) = addr))

∧ (∀min ·min ∈ NODES ⇒ (CFGpred(min) = ∅ ∧ ICFGcallpred(min) = ∅ ∧ ICFGretpred(min) = ∅)
⇒ (∀node · (node ∈ NODES ⇒ node 6= min)⇒ (min(node,min) = min))

⇒ ∃pd1 , x , c1 , p1 , q1 · HOARE WITH ASSERT(pd1 , assnsentry ,min,node, x , c1 , p1 , q1) ∧
(prestate = aPC min ∗ p1))

∧ (∀out · out ∈ NODES ⇒ (CFGsucc(out) = ∅)
⇒ (∀funcnode · (funcnode ∈ FUNCS ⇒ out 6∈ ICFGcallsucc(funcnode)))

⇒ ∃pd1 , assn1 ,node, x , c1 , p1 , q1 · HOARE WITH ASSERT(pd1 , assn1 , out ,node, x , c1 , p1 , q1) ∧
(poststate = q1) ∧ (pd1 ⇒ postcondexit))

∧ (∀node, pred , succ ·
(node ∈ NODES)⇒
(pred ∈ CFGpred(node))⇒
((succ ∈ CFGsucc(node)) ∨ (succ ∈ ICFGcallpred(node)))⇒

∃pd1 , assn1 , x , c1 , p, q , pd2 , assn2 , c2 , r ·
HOARE WITH ASSERT(pd1 , assn1 , pred ,node, x , c1 , p, q) ∧
HOARE WITH ASSERT(pd2 , assn2 ,node, succ, x , c2 , q , r) ∧ (pd1 ⇒ assn2))

∧ (∀node, succ · node ∈ ICFGcallsucc(succ)⇒ succ ∈ ICFGcallpred(node)⇒
∃pd1 , assn1 , x , c1 , p, q ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn2 , pd2 , r ·
HOARE WITH ASSERT(pd1 , assn1 ,node, succ, x , c1 , p, q) ∧
FUN SAFE(succ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn2 , pd2 , q , r) ∧ (pd1 ⇒ assn2))

∧ (∀node, pred , succ ·
(node ∈ ICFGretsucc(pred))⇒
(pred ∈ ICFGretpred(node))⇒
((succ ∈ CFGsucc(node)) ∨ (succ ∈ ICFGcallpred(node)))⇒

∃pd1 , assn1 , x , c2 , p, q , pd2 , assn2 , r ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 ·
FUN SAFE(pred ,nodes, funcs, cfg1 , cfg2 , cfg3 , cfg4 , cfg5 , cfg6 , assn1 , pd1 , p, q) ∧
HOARE WITH ASSERT(pd2 , assn2 ,node, succ, x , c2 , q , r) ∧ (pd1 ⇒ assn2)))

Fig. 1. Safe Function (FSI) rule: Judgment for Interprocedural Function Safety

