
Short Paper: CHIPS: Content-based Heuristics for
Improving Photo Privacy for Smartphones

Jiaqi Tan
Carnegie Mellon University

Pittsburgh, PA, USA
tanjiaqi@cmu.edu

Utsav Drolia
Carnegie Mellon University

Pittsburgh, PA, USA
utsav@cmu.edu

Rolando Martins
Carnegie Mellon University

Pittsburgh, PA, USA
rolandomartins@cmu.edu

Rajeev Gandhi
Carnegie Mellon University

Pittsburgh, PA, USA
rgandhi@ece.cmu.edu

Priya Narasimhan
Carnegie Mellon University

Pittsburgh, PA, USA
priya@cs.cmu.edu

ABSTRACT
The Android permissions system provides all-or-nothing ac-
cess to users’ photos stored on smartphones, and the permis-
sions which control access to stored photos can be confusing
to the average user. Our analysis found that 73% of the top
250 free apps on the Google Play store have permissions that
may not reflect their ability to access stored photos. We pro-
pose CHIPS, a unique content-based fine-grained run-time
access control system for stored photos for Android which
requires minimal user assistance, runs entirely locally, and
provides low-level enforcement. CHIPS can recognize faces
with minimal user training to deny apps access to photos
with known faces. CHIPS’s privacy identification has low
overheads as privacy checks are cached, and is accurate, with
false-positive and false-negative rates of less than 8%.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess control

Keywords
Android; Photo Privacy; Access Control

1. INTRODUCTION
Smartphones are becoming increasingly ubiquitous, and they
are carried and used everywhere. Users are likely to capture
and store photos of the people and events in their daily
lives on their smartphones, creating collections of poten-
tially privacy-sensitive photos. At the same time, smart-
phone platforms such as iOS and Android allow users to
install third-party applications (apps), which can interact
with other apps and data on the smartphone, including re-
trieve photos stored on the smartphone, and connect to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WiSec’14, July 23–25, 2014, Oxford, United Kingdom.
ACM 978-1-4503-2972-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2627393.2627394.

Internet to exfiltrate data. This creates a privacy concern
where photos which a user considers private can be inadver-
tently extracted by an app and exfiltrated without the user’s
knowledge. In this paper, we show concrete, real-world ev-
idence that there are privacy issues with how the Android
platform controls access to stored photos. Then, we hypoth-
esize that photos containing faces of persons known to the
user, e.g. family or close friends, are privacy-sensitive, as the
user would not want these photos to be inadvertently leaked.
Using this hypothesis as a heuristic, we develop a unique
content-based approach, CHIPS, to provide finer-grained ac-
cess control for stored photos for the Android platform.
Contributions. Our contributions in this work are: (i) we
review the privacy risks to stored photos due to Android’s
architecture, (ii) we analyzed the top 250 free apps on the
Google Play store to evaluate how current apps may pose
unintended privacy risks to stored photos, (iii) we design
and implement a novel content-based access control system
for photos: we present CHIPS, a practical face recognition-
based, fine-grained, run-time access control system for stored
photos which denies unauthorized apps access to photos con-
taining faces of user-specified persons, (iv) we show in this
initial prototype that using an off-the-shelf face recognition
algorithm, we can attain good accuracy with low training
requirements (optimal accuracy with 4 training images per
face) on frontal faces in reasonable lighting conditions, and
(v) we focus on our novel system architecture for privacy
enforcement for photos, which provides strong enforcement
with acceptable runtime overhead. To the best of our knowl-
edge, CHIPS is the first technique to apply face recognition to
photos locally on smartphones to automatically determine if
they are privacy-sensitive (based on prior user input), and
to implement access control at run-time to deny untrusted
apps access to sensitive photos.

2. BACKGROUND

2.1 Motivation
Android’s Photo Permissions. To understand how
Android controls access to stored photos, we have to under-
stand how photos are stored, how apps access photos, and
the permissions system of the Android framework.
Photos captured by the camera of an Android device are
stored in the external storage directory, or “SD card”, which

is either a physical removable memory card, or a logical
area in the device’s memory. Android is based on Linux,
and it uses Linux file owners and permissions to control ac-
cess to files. Android provides per-app isolation for data
files belonging to different apps. However, this per-app file
isolation does not apply to stored photo files, as photos are
stored in the external storage location, /sdcard. All files in
the external storage location of an Android device are owned
by the system user and sdcard_rw group, and they are
group-readable and group-writable by default.
An Android app can access stored photos in a number of
ways. (i) An app can list the files in the system-wide photo
directory and open the file storing the photo. (ii) An app
can use the Android MediaStore API to retrieve a list of
available photos and their metadata (e.g. full path, thumb-
nails). Then, the app can open the file for the photo at its
given path. (iii) An app can delegate photo selection to the
system by using the Android framework’s “Image Picker”
interface (in the com.android.gallery3d package), and
the framework returns an internal URI (Uniform Resource
Identifier). Then, the app can use the framework’s Con-
tentResolver object to obtain an Java InputStream to
read the photo, and the framework opens the file containing
the requested photo on behalf of the app. Hence, in each
of the ways that an Android app can access stored photos,
filesystem permissions control access to each photo.
There are two problems with Android’s access control for
stored photos. First, permissions controlling access to pho-
tos stored in a smartphone are currently coarse-grained. An-
droid allows users to choose whether to allow an app to
access photos stored on the SD card; however, users can
only choose to allow the app access to all stored photos,
and cannot selectively deny access to individual photos, be-
cause access to the SD card location is controlled by the
READ_EXTERNAL_STORAGE system permission. While an
app might present users with an “Image Picker” interface,
an Android app can access any photo, and not just the
user-selected ones. Hence the app will be able to read all
stored photos. Second, while READ_EXTERNAL_STORAGE
controls access to stored photos on Android, this may be
unintuitive to the average user. The CAMERA permission is
described as allowing the app to “take pictures and videos”,
while the READ_ and WRITE_EXTERNAL_STORAGE permis-
sions are described as allowing the app to “modify or delete
the contents of your SD card”. Hence, it may appear to the
average user that the permission which controls access to
photos is the CAMERA permission, as it is the only permis-
sion whose description mentions photos. Unfortunately, this
is not the case, and only the READ_EXTERNAL_STORAGE,
but not the CAMERA, permission is required to access stored
photos, which we verified empirically.
Evidence of Unintended Photo Access. Next, we
identify apps which appear to not access stored photos based
on their requested permissions, but which in fact have access
to stored photos. We analyzed the top 250 free apps from the
Google Play store (e.g. Facebook, Pinterest, etc.) to identify
apps which requested the READ_EXTERNAL_STORAGE per-
mission, but which did not request the CAMERA permission.
We believe that a novice user, when shown this combina-
tion of permissions, would not believe that these apps are
accessing any stored photos from the device, when it can
in fact do so. In this group of apps, we also further dis-
tinguish between apps which requested the INTERNET per-

mission, which would be able to exfiltrate stored photos, as
compared to those which did not. We used the Androguard
analysis tool [1], which allowed us to extract the permis-
sions requested by each app from its Manifest. We found
that 183 out of 250 apps (2 apps excluded due to bytecode
analysis difficulties) requested READ_EXTERNAL_ STORAGE
but not CAMERA permissions, and 181 of these apps also
requested the INTERNET permission. Based on their re-
quested permissions, 73% of the top 250 free apps on the
Google Play store have unexpected and complete access to
the photos stored on a user’s smartphone, and can even ex-
filtrate these photos (further analysis is needed to determine
if these apps actually exfiltrate photos without the user’s
knowledge). Next, we analyzed the bytecode of these 181
apps using Androguard, and found that 120 of these apps
launched the Android-supplied Image Picker, in which case
users would know that the app was accessing stored pho-
tos, even though the app’s permissions may not reflect so.
Nonetheless, these apps can still access all stored photos, re-
gardless of which photos users picked. Thus, there is a need
for stronger, finer-grained access control for stored photos.

2.2 Problem Statement and Limitations
Goals. Our goals for the design and implementation of
CHIPS are: (i) not require any changes to the way third-
party apps access photos, or to the way the Android plat-
form stores photos, (ii) minimize the false-negative and false-
positive rates of our face recognition for privacy identifica-
tion, (iii) run all face detection and recognition locally on
the smartphone to preserve privacy, (iv) minimize the user
assistance required during the training for privacy identi-
fication, (v) have the training process for privacy identifi-
cation complete in a reasonable amount of time (e.g. < 1
hour for 500 images on an average smartphone), (vi) have
the dynamic privacy enforcement decision be reached in a
reasonable amount of time (< 1 second on an average smart-
phone), (vii) third-party apps should not be able to circum-
vent CHIPS’s decision to deny access to a stored photo.
Assumptions. We make a number of assumptions about
users’ apps and smartphones, although most of these as-
sumptions are artifacts of our current implementation rather
than necessitated by our design, and we intend to address
some of these assumptions in our future work. First, we as-
sume that file extensions accurately describe file contents,
and we only perform our privacy checks on files with image
extensions (e.g. .jpg). This technique is not robust to user
apps renaming files to non-image extensions before access-
ing them, and we plan to implement file content checking in
future versions. Second, we assume that the Android core
libraries, framework, and operating system are isolated from
user apps, and that user apps are unable to modify the core
libraries, framework, or operating system. This assumption
is necessary as our privacy enforcement relies on the Linux
kernel (with our added modifications) to report file accesses
to the CHIPS system service, and our CHIPS system service
is implemented as part of the Android framework.
Threat Model. Our goal is to guard against unauthorized
retrieval of potentially private photos on users’ smartphones
by untrusted apps. We assume that the smartphone OS
and framework are trusted, and are not circumvented by
malicious attackers. Hence, all access to a smartphone’s
stored photos must be via the authorized means described
in §2.1. We also assume that the CHIPS user app is not

exploited by malicious users, and that the data of the CHIPS
user app cannot be modified by other apps.
Limitations. We do not develop novel face detection or
recognition algorithms. We use the implementation of the
well-known Eigenfaces [14] algorithm in the OpenCV library
[4] as an initial proof-of-concept to show that a standard face
recognition algorithm can be run entirely locally on aver-
age smartphones today while achieving good performance,
while focusing on the system architecture (i.e. mediation
mechanisms) necessary for enforcing photo privacy. Hence,
we do not address face recognition challenges, such as oc-
cluded faces, poor lighting, and side poses. As such, our
initial evaluation of the face recognition accuracy of CHIPS
uses a dataset (§4) of frontal faces without difficult lighting
conditions, side poses, nor occluded faces. We also currently
require changes to the Linux kernel so that our privacy en-
forcement cannot be circumvented by low-level means e.g.
using the Java Native Interface (JNI) to access photos.

3. DESIGN AND IMPLEMENTATION

3.1 Design
Privacy Identification

Face
Detection

Face
Recognition

(Training)

Face
Database

Privacy Enforcement

File Access
Interposition
(image files)

Check for
Trained
Faces

File
Access

Decision

Figure 1: Overall approach of CHIPS

In place of Android’s current all-or-nothing permissions for
photo access by apps, CHIPS consists of a 2-step process
(shown in Figure 1) which empowers users to indicate their
privacy preferences for stored photos at a finer granularity.

3.1.1 Privacy Identification
CHIPS’s privacy identification consists of an offline train-
ing phase, and a background classification phase. The of-
fline training phase is carried out before privacy-sensitive
photos are accessed: users assist CHIPS in training a face
database. This database contains sample faces of persons
whom the user considers privacy-sensitive (e.g. family, close
friends). The background classification phase involves ex-
tracting faces from stored photos, and checking if these faces
match any faces in the trained database.
Both the offline training and background classification phases
begin with face detection to extract rectangular regions in
a photo containing faces. This ensures that our face recog-
nition works only on faces, and does not need to work with
other unrelated parts of each photo. We used the Local Bi-
nary Patterns (LBP) [9] classifier to detect faces. Next, we
use the well-known algorithm, Eigenfaces [14], for face recog-
nition. The training step builds a database of sample faces
for each person, so that during the classification step, the
algorithm can tell if a given face belongs to a person whose
face was in the training database, and which person the face
belongs to. As Eigenfaces is a supervised algorithm, we re-
quire that for each person that the user would like CHIPS
to later recognize, the user assists CHIPS by selecting faces
of that person as training data.

3.1.2 Privacy Enforcement
Next, we describe the design of CHIPS’s privacy identifi-
cation and enforcement mechanisms for photo privacy. We

need to interpose on all file accesses to identify when image
files are being accessed. Then, when an image file is ac-
cessed, we need to check if there is privacy-sensitive content
(i.e. faces of persons in the training database from §3.1.1),
before deciding whether to block access to the file.
Kernel Interposition. As photos are accessed as regular
files in Android rather than through a specialized interface
(§2.1), we must interpose on all file accesses to identify ac-
cesses to image files for which our privacy checks must be
applied. We need to interpose on file accesses in the ker-
nel, rather than in the Android framework (e.g. java.io
classes), because apps can access files using the Java Native
Interface (JNI) to make C library calls, or directly invoke
system calls, which would bypass any framework or library
interposition. CHIPS’s kernel interposition also checks if the
accessed file has an image format extension, e.g. .jpg, be-
fore deciding whether to perform further security checks. If
the accessed file is not an image, CHIPS’s kernel interpo-
sition allows the kernel’s regular file permission checks to
proceed. CHIPS needs to decide in the kernel whether the
accessed file is an image which requires additional access
control (i.e. detect and recognize faces) so that access to
non-image files can proceed with minimal latency.
System Service for Access Decisions. Next, CHIPS
runs a system service as part of the Android framework (runs
in user-space, but as the special Android framework user)
to receive notifications of file accesses from the kernel and
provide access decisions for photos. This system service per-
forms initial checks against an app whitelist, moving the bur-
den of maintaining app whitelists out of the kernel, so that
we can minimize kernel modifications. Deciding whether an
app is whitelisted to access all images is a security-sensitive
operation, hence we place this functionality in the Android
framework so that the CHIPS system service is at the same
level of protection as the Android framework [12]. The
CHIPS system service communicates with the CHIPS user
app to request face recognition in accessed photos.
User-level Privacy Checks. Finally, we place the pri-
vacy checks (§3.1.1) in a user app, so that the most complex
part of the privacy checks (face detection and recognition)
are outside the protected Android framework’s process to
prevent privilege escalation attacks in the event of crashes.
Image files accessed by apps not in CHIPS’s whitelist are
forwarded to the CHIPS user app which performs the face
detection and recognition. CHIPS checks the image to de-
termine if there are any trained faces. If there is no match,
the file access is allowed; if there is a match, then access to
the image file is blocked, and the offending access is logged
to allow the user to make a decision later. The CHIPS user
app also maintains a cache of face recognition results for pho-
tos stored in the smartphone. This is to reduce the latency
that would result from having to perform face detection and
recognition on-demand on a photo when it is being accessed.
Whitelists. CHIPS also allows users to specify which apps
are to be given access to all stored photos without privacy
checks, and to allow users to specify which stored photos are
not privacy-sensitive, so that all apps can access them.

3.2 Implementation
We implement CHIPS for Android 4.2, and our implementa-
tion has three components (Figure 2). The first component
is the kernel-level file access interposition. We added 1.2
KLOC (thousands of lines of code) to the Linux kernel used

U
se

r A
pp

s
An

dr
oi

d
M

id
dl

ew
ar

e
Li

nu
x

Ke
rn

el
 File Permission

Interposition (Linux
Security Module

hook)

CHIPS Kernel
Netlink Module

CHIPS User App
Face Database

Training
Whitelist

Management

Result Cache

Image Access Log

Face Detection &
Classification

CHIPS User-space
Netlink Module

CHIPS System Service

Whitelist (Apps,
Files)

CHIPS System
Service

User App

Photo Access

Background Result
Computation

Android Binder
IPC call

Netlink socket
messages

Linux Security
Module hook

Figure 2: Architecture of CHIPS

in Android. The second component is the CHIPS System
Service, which manages file access decisions, and is imple-
mented as an Android System Service, and runs as part of
the Android Framework. The system service consisted of
2.4 KLOC. The third component is the CHIPS user app,
which is an Android app which allows users to train the face
database, and which performs face recognition on accessed
files, and also allows users to view a log of photos accessed
by other apps, and to whitelist photos or apps. The CHIPS
user app consisted of 8.5 KLOC.

3.2.1 Face Detection and Recognition
CHIPS’s privacy identification component uses implemen-
tations of well-known face detection and recognition algo-
rithms from the OpenCV [4] library. We used pre-trained
LBP classifiers [9] included with the OpenCV library for face
detection. To improve runtime, we scaled images down to
a size of 600× 600 pixels before face detection. To improve
detection accuracy, we first used the frontal-face classifier to
extract faces, and then used LBP classifiers for eyes, noses,
and mouths on the extracted faces as a sanity check. We
ensured that only one nose, two eyes, and one mouth are
detected, and that their relative positions in the face are
correct. Next, we used the OpenCV [4] implementation of
the Eigenfaces [14] algorithm on faces from the face detection
step for training and classification. To improve the runtime
of Eigenfaces, we first scaled down detected faces to 100×100
pixels, and we found no degradation in accuracy.

3.2.2 Privacy Enforcement: Access Control
To demonstrate the privacy enforcement of CHIPS, we modi-
fied the Android framework. We used the CyanogenMod [3]
distribution of the Android Open-source Project (AOSP),
which includes device-specific code e.g. device drivers. We
used CyanogenMod 10.1 (based on Android 4.2).
Kernel File Access Interposition. We interposed on all
file accesses in the Linux kernel used in Android by imple-
menting a Linux Security Module (LSM) [15]. To interpose
on file accesses, we implemented our own file_ permis-
sion security hook, which is called on every file read and
write. We also implemented a kernel module for communi-
cating with the CHIPS system service using Netlink sockets.
CHIPS System Service. The CHIPS system service acts
as an intermediary between the CHIPS kernel-level file inter-
position, and the CHIPS user app which runs face recogni-
tion on accessed photos. The CHIPS system service is imple-
mented as part of the Android framework. The CHIPS sys-
tem service receives kernel notifications when files with im-

age extensions are accessed, and it checks against its whitelist
of filenames and the user IDs of accessing apps to deter-
mine if access should be allowed, or if the image needs to be
checked. In the latter case, the system service requests for
a privacy check on the image filename accessed.
CHIPS User App. The CHIPS user app provides the
privacy checking functionality for privacy enforcement. The
user app is started when the smartphone boots up. It also
provides an interface to manage the whitelists of apps (al-
lowed access to all photos) and photos (allowed access by all
apps) in the CHIPS system service. When the CHIPS user
app receives a file access notification, it checks its cache (de-
scribed next) for a face recognition result for the accessed
photo, and if there is no result present, the user app pro-
ceeds to carry out face recognition. If any faces in the trained
database are present in the photo, the user app instructs the
system service to deny the app access to the photo.
Result Caching and Background Scanning. To im-
prove the performance of CHIPS’s privacy enforcement, the
CHIPS user app runs a background service to run face recog-
nition on all stored photos and cache the results. This is to
eliminate the need to run face recognition when the user is
accessing photos. The cache is invalidated when the user
retrains or updates the face recognition model, or when a
stored photo is modified. This background face recognition
runs only when the smartphone is connected to an external
power source to prevent battery drainage.

4. EVALUATION
To evaluate CHIPS, we used the Caltech Faces 1999 dataset
[2], which contains 450 color photos of frontal faces of 27
individuals with different lighting conditions, expressions,
and realistic backgrounds. We believe this dataset bears
some similarity to photos that average users would capture
of people on their smartphones. Our experiments used a
Google Nexus S (1 GHz Cortex-A8 processor, 16 GB storage,
512 MB RAM) smartphone, with our modified version of
Android 4.2.

4.1 Case Studies of Enforcement
We demonstrate CHIPS’s photo privacy enforcement on the
Android app for Facebook. We trained a database con-
taining the faces of 19 (out of 27) of the persons from the
Faces 1999 dataset, and loaded a number of photos from the
dataset onto our test phone. These photos contained both
persons whose faces were in and not in the trained database.
Figure 3 shows CHIPS’s photo privacy enforcement block-
ing the Facebook app’s access to stored photos containing
trained faces. We tried to share a photo in the Facebook
app. Figure 3(a) shows the Facebook app’s internal im-
age picker. There are 9 stored photos, and 5 of the photos
have no displayed thumbnails. This is because CHIPS has
detected faces from the trained database in these photos,
and denied access to them, while the other 4 photos have
faces not in the trained database. Figure 3(b) shows the
error message that occurs when a user selects one of these
blocked photos due to CHIPS’s kernel interposition denying
access to the accessed photo. CHIPS also alerts the user
that access to the photo has been denied (Figure 3(c)).

4.2 Face Recognition Performance
Face Detection. We evaluated CHIPS’s face detection
on the Caltech Faces 1999 dataset. A false-positive occurs

(a) Image Picker (b) Blocked image (c) System alert

Figure 3: CHIPS enforcement on the Facebook app.
(Stored photos c© California Institute of Technology [2])

when our algorithm reports a face in a region of the photo
which is not a face, and a false-negative occurs when our
algorithm reports that there are no faces in a photo that
contains a face. We found that our face detection algorithm
had no false-positives, and a false-negative rate of 2.0%.
Face Recognition Accuracy. The accuracy of CHIPS’s
face recognition is the percentage of faces in the test set for
which the face recognition algorithm returns the correct la-
bel for a given face in the training database, and of faces
not in the training database for which CHIPS returns “un-
known”. We varied the number of training images per face
from 2 to 16. In addition, the test set included a num-
ber of faces for which we provided no training images. We
report the average accuracy over 5 iterations of the experi-
ment. From Figure 4(a), we can see that the face recognition
accuracy improves significantly as we increase the number
of training images per face from 2 to 4. Any additional
training images per face only improves the face recognition
accuracy slightly. The optimal face recognition accuracy is
obtained with 11 training images per face, although the ac-
curacy varies between 72% and 76% when there are between
4 and 15 training images per face. Hence, we can see that:
(i) CHIPS’s face recognition algorithm performs adequately,
achieving more than 70% accuracy, and (ii) CHIPS’s face
recognition does not require significant amounts of training
data, and CHIPS can achieve near-optimal (within 4%) face
recognition with just 4 training images per face.
Privacy Identification. The goal of CHIPS’s privacy en-
forcement is to identify whether a given face is in its database
rather than to correctly label every face. Hence, it is suf-
ficient for CHIPS to identify if a face is in the database,
even if the algorithm misidentifies the face as belonging to
a different person in the database. Thus, a false-positive
for CHIPS’s privacy identification occurs when a photo does
not contain any faces in the trained database, but CHIPS
labels it as one of the faces in the trained database, while
a false-negative occurs when a photo contains a face in the
trained database, but CHIPS labels it as not belonging to
the database. We report the false-positive and false-negative
rates for CHIPS’s privacy identification over 5 iterations for
each number of training images per face. The false-positive
rate increases with more training images per face, and the
optimal false-positive rate occurs at 4 training images per
face, with a 8% false-positive rate (Figure 4(b)). This is

2 4 6 8 10 12 14 16

6
0

6
5

7
0

7
5

8
0

Training Images per Face

A
cc

u
ra

cy
 (

%
)

(a) Face recognition accu-
racy.

2 4 6 8 10 12 14 16

0
5

1
0

1
5

2
0

Training Images per Face

Fa
ls

e
−

P
o
si

ti
v
e
 R

a
te

 (
%

)

(b) False-positive rate (pri-
vacy identification).

2 4 6 8 10 12 14 16

0
5

1
0

1
5

2
0

Training Images per Face

Fa
ls

e
−

N
e
g
a
ti
v
e
 R

a
te

 (
%

)

(c) False-negative rate (pri-
vacy identification).

2 4 6 8 10 12 14 16

2
4

6
8

1
2

Training Images per Face

T
ra

in
in

g
 T

im
e
 (

m
in

u
te

s)

(d) Time taken for database
training

Figure 4: Performance for face recognition and pri-
vacy identification, and time taken for training.

likely due to overfitting when there are too many training
images. On the other hand, the false-negative rate stays be-
low 8% (Figure 4(c)) regardless of the number of training im-
ages per face. Thus, CHIPS’s privacy identification performs
well, with low false-positive and false-negative rates. CHIPS
can block access to privacy-sensitive photos about 92% of
the time, and it wrongly blocks access to non-sensitive pho-
tos not more than 8% of the time when there are at most 4
training images per face.

4.3 Performance
Training Time. Figure 4(d) shows the time taken to train
CHIPS’s face recognition for a 19-person database, averaged
over 5 runs. All timing experiments ran on the Google Nexus
S smartphone. The time taken for CHIPS’s model training
increases linearly with more training images per face. For
optimal privacy identification, CHIPS should use 4 train-
ing images per face (§4.2), and CHIPS takes slightly under
4 minutes to train a database using 4 training images per
face. Also, CHIPS can complete training in under 10 min-
utes when there are 10 or less training images per face for a
19-person database. Hence, CHIPS’s face recognition train-
ing can be completed in a reasonable amount of time.

Photo Access Scenario Time

1 No kernel interposition (Baseline) 95.8 ms
2 App/photo not whitelisted, results not

cached
3677 ms

3 App/photo not whitelisted, results cached 190.0 ms
4 App whitelisted 117.0 ms

Table 1: Average access times to stored photos

Enforcement and Classification Time. Next, we mea-
sure the time taken by CHIPS to enforce photo access con-

trol decisions, and to classify photos to determine access
control decisions. We measure the time taken by an An-
droid app to access stored photos in various scenarios. Ta-
ble 1 shows the times taken to access each photo, averaged
over 50 random photos from the Caltech Faces 1999 dataset.
Scenario 1 establishes the baseline time taken to access each
stored photo without CHIPS. While it takes 3.6 seconds to
perform a privacy check for a photo without result caching
(Scenario 2), we believe that the majority of photo access de-
cisions will have been precomputed and cached by CHIPS’s
background service. Hence, for the majority of image file
accesses for which photo access decisions have been cached,
CHIPS would add 94.2 ms (98% overhead) to the critical
execution path of accessing the photo (Scenario 3). Finally,
Scenario 4 shows that for whitelisted apps, CHIPS adds only
21.2 ms (22% overhead) to the critical path of photo access.

5. RELATED WORK
Android Permissions. Apex [10] and Jeon et al. [7]
propose finer-grained permissions for Android, but do not
specifically target stored photos, unlike CHIPS. AppFence
[5] modified the Android framework to preserve privacy by
covertly substituting shadow data for sensitive data. AppFence
protects only the camera, and does not protect stored pho-
tos, unlike CHIPS. Aurasium [16] mediates third-party apps
using intercepts at the C and Java library level, whereas
CHIPS uses mediation in the kernel to prevent apps from
directly invoking system calls to bypass mediation.
Photo Privacy. P3 [11] protects the privacy of photos
stored on third-party Photo-sharing Service Providers (e.g.
social networks, photo-sharing sites). Darkly [6] is a privacy-
preserving computer-vision library based on the OpenCV
library [4], and it protects users from privacy loss due to
continuously-sensing perceptual applications. PlaceAvoider
[13] proposed new image analysis techniques for recognizing
sensitive places in video streams from first-person cameras.
PlaceAvoider focuses on image analysis, whereas CHIPS fo-
cuses on the systems architecture needed for enforcing stored
photo privacy. Klemperer et al. [8] designed a series of
user-studies which evaluated the effectiveness of using user-
assigned tags to build access control rules for photos.

6. CONCLUSION AND FUTURE WORK
We have presented CHIPS, a fine-grained, face-recognition-
based run-time access control system for stored photos on
Android smartphones, which overcomes Android’s current
all-or-nothing access model for stored photos. We have demon-
strated that CHIPS’s privacy enforcement prevents unau-
thorized access to privacy-sensitive photos in unmodified
real-world Android apps (Facebook), and that this enforce-
ment imposes acceptable overheads of just 94.2 ms (98%
overhead) per accessed photo when results are cached. We
have also demonstrated that existing face detection and face
recognition algorithms are sufficiently accurate, so that we
can identify if a given face belongs to a trained database with
a false-negative rate of 8%, and with a false-positive rate of
8%, and that they require minimal training, attaining opti-
mal performance with just 4 training images per person.
In future, we intend to expand the CHIPS framework to sup-
port other types of media such as audio/video, along with
other algorithms. For instance, we can extend CHIPS to run
optical character recognition (OCR) algorithms on accessed

photos to search for sensitive information, such as credit-
card numbers and addresses, to proactively block access to
photos containing such information. We also intend to ex-
plore the use of content-type checks to robustly identify files
requiring privacy checks without relying on file extensions.

Acknowledgements
This research is funded in part by CMU-SYSU Collabora-
tive Innovation Research Center and the SYSU-CMU Inter-
national Joint Research Institute. We would like to thank
the anonymous reviewers and our shepherd, Apu Kapadia,
for their comments and constructive feedback. We would
also like to thank Anupam Datta for his feedback on earlier
versions of this work.

7. REFERENCES
[1] Androguard. https://code.google.com/p/androguard/.

[2] Computational Vision at CalTech.
http://www.vision.caltech.edu/archive.html.

[3] CyanogenMod. http://www.cyanogenmod.org.

[4] OpenCV. http://opencv.org/.

[5] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These Aren’t the Droids You’re Looking
For: Retrofitting Android to Protect Data from
Imperious Applications. In ACM CCS, 2010.

[6] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner
Darkly: Protecting User Privacy From Perceptual
Applications. In IEEE Security and Privacy, 2013.

[7] J. Jeon, K. Micinski, J. Vaughan, A. Fogel, N. Reddy,
J. Foster, and T. Millstein. Dr. Android and Mr. Hide:
Fine-grained Permissions in Android Applications. In
IEEE SPSM, 2012.

[8] P. Klemperer, Y. Liang, M. Mazurek, M. Sleeper,
B. Ur, L. Bauer, L. Cranor, N. Gupta, and M. Reiter.
Tag, You Can See It! Using Tags for Access Control in
Photo Sharing. In ACM SIGCHI, May 2012.

[9] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Li. Learning
Multi-scale Block Local Binary Patterns for Face
Recognition. In International Conference on
Biometrics (ICB), 2007.

[10] M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model and Enforcement with
User-defined Runtime Constraints. In ASIACCS, 2010.

[11] M. Ra, R. Govindan, and A. Ortega. P3: Toward
Privacy-Preserving Photo Sharing. In NSDI, 2013.

[12] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,
S. Dolev, and C. Glezer. Google android: A
comprehensive security assessment. IEEE Security and
Privacy, March 2010.

[13] R. Templeman, M. Korayem, D. Crandall, and
A. Kapadia. PlaceAvoider: Steering First-Person
Cameras away from Sensitive Spaces. In NDSS, 2014.

[14] M. Turk and A. Pentland. Eigenfaces for Recognition.
Journal of Cognitive Neuroscience, 3(1), 1991.

[15] C. Write, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: General
Security Support for the Linux Kernel. In USENIX
Security Symposium, Aug 2002.

[16] R. Xu, H. Saidi, and R. Anderson. Aurasium:
Practical Policy Enforcement for Android
Applications. In USENIX Security Symposium, 2012.

